
R Installation and Administration
Version 1.5.1 (2002-06-17)

R Development Core Team

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.
Permission is granted to copy and distribute modified versions of this manual under the con-
ditions for verbatim copying, provided that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.
Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modified versions, except that this permission notice
may be stated in a translation approved by the R Development Core Team.
Copyright c© 2001–2002 R Development Core Team
ISBN 3-901167-52-8

i

Table of Contents

1 Obtaining R . 1
1.1 Getting and unpacking the sources . 1
1.2 Using rsync . 1

2 Installing R under Unix . 2
2.1 Simple compilation . 2
2.2 Making the manuals . 3
2.3 Installation . 3

3 Installing R under Windows 5
3.1 Building from source . 5

4 Installing R on Classic MacOS 6

5 Add-on packages . 7
5.1 Installing packages . 7
5.2 Updating packages . 8
5.3 Removing packages . 8

Appendix A Essential and useful other programs
. 9
A.1 Essential programs . 9
A.2 Useful libraries and programs . 9

A.2.1 Tcl/Tk . 9
A.2.2 Linear algebra . 10

Appendix B Configuration on Unix 11
B.1 Configuration options . 11
B.2 Configuration variables . 11
B.3 Using make . 12
B.4 Using FORTRAN . 12
B.5 Compile and load flags . 13
B.6 Building the gnome interface . 14
B.7 Platform notes . 15

B.7.1 MacOS X . 15
B.7.2 Solaris on Sparc . 15
B.7.3 HPUX . 16
B.7.4 IRIX . 17
B.7.5 Alpha/OSF1 . 17
B.7.6 Alpha/FreeBSD . 17
B.7.7 AIX . 17

ii

Appendix C New platforms 18

Function and variable index 19

Concept index . 20

Chapter 1: Obtaining R 1

1 Obtaining R

Sources, binaries and documentation for R can be obtained via cran, the “Comprehen-
sive R Archive Network”. See the file ‘RESOURCES’ in the R distribution for information on
cran.

1.1 Getting and unpacking the sources

The simplest way is to download the most recent ‘R-x.y.z.tgz’ file, and unpack it with
tar xvfz R-x.y.z.tgz

on systems that have GNU tar installed. On other systems you need at least to have the
gzip program installed. Then you can use

gzip -dc R-x.y.z.tgz | tar xvf -

If you need to transport the sources on floppy disks, you can download the
‘R-x.y.z.tgz-split.*’ files and paste them together at the destination with (Unix)

cat R-x.y.z-split.* > R-x.y.z.tgz

and proceed as above. If you want the build to be usable by a group of users, set umask
before unpacking so that the files will be readable by the target group (e.g., umask 022 to
be usable by all users).

Finally, for patch releases (‘x.y.z’ with z != 0), a patch against the preceding release is
made available in ‘R-x.y.{z-1}-x.y.z.diff.gz’ (e.g., ‘R-1.2.2-1.2.3.diff.gz’), which
is generally a much smaller file that the ‘.tgz’ files. Such a file can be applied to the sources
of the previous version by changing to the top directory of it and

gzip -dc /path/to/it/R-x.y.{z-1}-x.y.z.diff.gz | patch -E -p1

Beware that this does not necessarily work if the older sources have been modified (e.g., by
building in their directories).

1.2 Using rsync

Sources are also available via anonymous rsync. Use
rsync -rC rsync.r-project.org::module R

to create a copy of the source tree specified by module in the subdirectory ‘R’ of the current
directory, where module specifies one of the four existing flavors of the R sources, and can
be one of ‘r-release’ (current released version), ‘r-patched’ (patched released version),
and ‘r-devel’ (development version, less stable), and ‘r-ng’ (next generation, unstable).
The rsync trees are created directly from the master CVS archive and are updated hourly.
The ‘-C’ option in the rsync command is to cause it to skip the CVS directories. Further
information on rsync is available at http://rsync.samba.org/rsync/.

http://rsync.samba.org/rsync/

Chapter 2: Installing R under Unix 2

2 Installing R under Unix

R will configure and build from source under a number of common Unix-like platforms,
including ‘i386-freebsd’, ‘i386-linux-gnu’, ‘i386-sun-solaris’, ‘powerpc-linux-gnu’,
‘powerpc-apple-darwin’, ‘mips-sgi-irix’, ‘alpha-linux-gnu’, ‘alpha-dec-osf4’,
‘rs6000-ibm-aix’, ‘hppa-hp-hpux’, ‘sparc-linux-gnu’ and ‘sparc-sun-solaris’.

In addition, binary distributions are available for most common Linux distributions,
Compaq Alpha systems running OSF/Tru64, and for MacOS X (Darwin) with X11. See
the faq for current details. These are installed in platform-specific ways. So for the rest of
this chapter we consider only building from the sources.

2.1 Simple compilation

First review the essential and useful tools and libraries in Appendix A [Essential and
useful other programs], page 9, and install those you want or need.

Choose a place to install the R tree (R is not just a binary, but has additional data sets,
help files, font metrics etc). Let us call this place R HOME. Untar the source code. This
should create directories ‘src’, ‘doc’, and several more. Issue the following commands:

./configure
make

(See Section B.3 [Using make], page 12 if your make is not called ‘make’.)
Then check the built system works correctly, by

make check

Failures are not necessarily problems as they might be caused by missing functionality, but
you should look carefully at any reported discrepancies. To re-run the tests you would need

make check FORCE=FORCE

If these commands execute successfully, the R binary will be copied to the
‘R HOME/bin’ directory. In addition, a shell-script front-end called ‘R’ will be created
and copied to the same directory. You can copy this script to a place where users can
invoke it, for example to ‘/usr/local/bin/R’. You could also copy the man page ‘R.1’
to a place where your man reader finds it, such as ‘/usr/local/man/man1’. If you want
to install the complete R tree to, e.g., ‘/usr/local/lib/R’, see Section 2.3 [Installation],
page 3. Note: you do not need to install R: you can run it from where it was built.

You do not necessarily have to build R in the top-level source directory (say,
‘TOP SRCDIR’). To build in ‘BUILDDIR’, run

cd BUILDDIR
TOP SRCDIR/configure
make

and so on, as described further below. This has the advantage of always keeping your source
tree “clean”. (You may need GNU make to allow this.)

Make will also build plain text help pages as well as html and LaTEX versions of the R
object documentation (the three kinds can also be generated separately using make help,
make html and make latex). Note that you need Perl version 5: if this is not available on
your system, you can obtain PDF versions of the documentation files via cran.

Chapter 2: Installing R under Unix 3

Now rehash if necessary, type R, and read the R manuals and the R faq (files ‘FAQ’ or
‘doc/html/faq.html’, or http://www.ci.tuwien.ac.at/~hornik/R/R-FAQ.html which
always has the latest version).

2.2 Making the manuals

There is a set of manuals that can be built from the sources,

‘refman’ Printed versions of all the help pages.

‘R-FAQ’ R faq (which is already built for you).

‘R-intro’ “An Introduction to R”.

‘R-data’ “R Data Import/Export”.

‘R-admin’ “R Installation and Administration”, this manual.

‘R-exts’ “Writing R Extensions”.

‘R-lang’ “The R Language Definition”.

To make these, use
make dvi to create DVI versions
make pdf to create PDF versions
make info to create info files (not ‘refman’).

You will not be able to build the info files unless you have makeinfo version 4 or later
installed (and some Linux distributions have 3.12).

The DVI versions can be previewed and printed using standard programs such as xdvi
and dvips. The PDF versions can be viewed using Acrobat Reader or (recent versions of)
ghostscript: they have hyperlinks that can be followed in Acrobat Reader. The info files
are suitable for reading online with Emacs or the standalone GNU Info.

2.3 Installation

After
./configure
make
make check

have been completed successfully, you can install the complete R tree to your system by
typing

make install

This will install to the following directories:

‘prefix/bin’
the front-end shell script

‘prefix/man/man1’
the man page

‘prefix/lib/R’
all the rest (libraries, on-line help system, . . .)

http://www.ci.tuwien.ac.at/~hornik/R/R-FAQ.html

Chapter 2: Installing R under Unix 4

where prefix is determined during configuration (typically ‘/usr/local’) and can be set by
running configure with the option ‘--prefix’, as in

./configure --prefix=/where/you/want/R/to/go

This causes make install to install the R executable to ‘/where/you/want/R/to/go/bin’,
and so on. The prefix of the installation directories can be seen in the status message that
is displayed at the end of configure. You can install into another directory by using

make prefix=/path/to/here install

To install DVI, info and PDF versions of the manuals, use one or more of
make install-dvi
make install-info
make install-pdf

To ensure that the installed tree is usable by the right group of users, set umask appropriately
(perhaps to ‘022’) before unpacking the sources and throughout the build process.

Chapter 3: Installing R under Windows 5

3 Installing R under Windows

The ‘bin/windows’ directory of a cran site contains binaries for a base distribution and
a large number of add-on packages from cran to run on Windows 95, 98, NT4, 2000 and
ME (at least) on Intel and clones (but not on other platforms).

You do need one of those Windows versions: Windows 3.11+win32s will not work.
Your file system must allow long file names (as is likely except perhaps for some network-

mounted systems).
The simplest way is to use ‘SetupR.exe’ or ‘miniR.exe’. Just double-click on the icon

and follow the instructions. If you installed R this way you can uninstall it from the Control
Panel or Start Menu (unless you suppressed making a group for R).

See the R Windows faq for more details.

3.1 Building from source

If you want to build this port from the sources, see the file ‘src/gnuwin32/INSTALL’ in
the source distribution. You will need to collect, install and test an extensive set of tools:
see http://www.stats.ox.ac.uk/pub/Rtools/ for the current locations.

You may need to compile under a case-honouring file system: we found that a samba-
mounted file system (which maps all file names to lower case) did not work. Open a
commands window at a directory whose path does not contain spaces, and run something
like

tar zxvf R-1.5.0.tgz
cd R-1.5.0\src\gnuwin32
make

sit back and wait (for about 5 minutes on 1GHz PIII with a fast local disc).
For further details, including how to make the documentation and how to cross-compile,

see ‘src/gnuwin32/INSTALL’.

http://www.stats.ox.ac.uk/pub/R/rw-FAQ.html
http://www.stats.ox.ac.uk/pub/Rtools/

Chapter 4: Installing R on Classic MacOS 6

4 Installing R on Classic MacOS

The ‘bin/macos’ directory of a cran site contains bin-hexed (‘hqx’) and stuffit (‘sit’)
archives for a base distribution and a large number of add-on packages to run under MacOS
8.6 to MacOS 9.1 or MacOS X natively. Just extract one of these archives in a suitable
folder using standard utilities like Aladdin Stuffit Expander (tm).

There is also a port to MacOS X which is considered to be a Unix variant in this
document. You can find it in the ‘bin/macosx’ directory at of a cran site.

Chapter 5: Add-on packages 7

5 Add-on packages

This chapter applies to Unix-like and Windows versions of R, but not to the Classic
MacOS port.

It is helpful to use the correct terminology. A package is loaded from a library by
the function library(). Thus a library is a directory containing installed packages; the
main library is ‘R HOME/library’, but others can be used, for example by setting the
environment variable R_LIBS or using the R function .libPaths().

5.1 Installing packages

Installing source packages requires that Perl 5.005 or later be installed.

Note that you need to specify implicitly or explicitly the library to which the package is
to be installed. This is only an issue if you have more than one library, of course.

To install packages from source on Unix use

R CMD INSTALL -l /path/to/library pkg1 pkg2 ...

The part ‘-l /path/to/library’ can be omitted, in which case the first library in R_LIBS
is used if set, otherwise the main library ‘R HOME/library’ is used. (R_LIBS is looked
for in the environment: ‘.Renviron’ is not read by R CMD.)

The Windows equivalent is1

Rcmd INSTALL -l /path/to/library pkg1 pkg2 ...

Alternatively, packages can be downloaded and installed from within R. First set the
option CRAN to your nearest cran mirror, for example

> options(CRAN = "http://cran.us.r-project.org/")

Then download and install package foo by

> install.packages("foo")

Unless the library is specified (argument lib) the first library in the library search path is
used.

What this does is different on Unix and Windows. On Unix it consults the list of available
source packages on cran, downloads the latest version of the foo sources, and installs it
(via R CMD INSTALL). On Windows it looks at the list of binary versions of packages and
downloads the latest version (if any).

On Windows install.packages can also install a binary package from a local ‘zip’ file
by setting argument CRAN to NULL. RGui.exe has a menu Packages with a GUI interface
to install.packages, update.packages and library.

1 if you have the source-code package files installed

Chapter 5: Add-on packages 8

5.2 Updating packages

The command update.packages() is the simplest way to ensure that all the packages
on your system are up to date. Set the CRAN option as in the previous section. The
update.packages() downloads the list of available packages and their current versions,
compares it with those installed and offers to fetch and install any that have later versions
on cran.

An alternative way of keeping packages up-to-date is provided by the command
packageStatus(), which returns an object with information on all installed packages
and packages available at multiple repositories (CRAN, local archive, . . .). The print
and summary methods give an overview of installed and available packages, the upgrade
method offers to fetch and install outdated packages. This allows R to fetch packages from
several repositories and keep in sync with all of them, instead of only one CRAN mirror,
and is intended to become the default package manager for future versions of R.

5.3 Removing packages

Packages can be removed in a number of ways. From a command prompt they can be
removed by

R CMD REMOVE -l /path/to/library pkg1 pkg2 ...

(Unix) or
Rcmd REMOVE -l /path/to/library pkg1 pkg2 ...

(Windows).
From a running R process they can be removed by

> remove.packages(c("pkg1", "pkg2"),
lib = file.path("path", "to", "library"))

Finally, in most installations one can just remove the package directory from the library.
Note: whereas it is currently possible to install package bundles, one cannot remove

these as such—the packages contained in the bundle have to removed individually.

Appendix A: Essential and useful other programs 9

Appendix A Essential and useful other programs

This appendix gives details of programs you will need to build R on Unix-like platforms,
or which will be used by R if found by configure.

A.1 Essential programs

You need a means of compiling C and FORTRAN 77 (see Section B.4 [Using FORTRAN],
page 12). Some add-on packages also need a C++ compiler.

You will need Perl version 5.004 or later, available via http://www.perl.com/CPAN/, to
build any of the on-line documentation.

You will not be able to build the info files unless you have makeinfo version 4 or later
installed (and some Linux distributions have 3.12).

The typeset documentation needs tex and latex, or pdftex and pdflatex.

A.2 Useful libraries and programs

The command-line editing depends on the readline library available from any GNU
mirror: you will need a fairly recent version.

Use of gzfile connections needs zlib (version 1.1.3 or later): if an installed version is
not found, that in the R sources will be compiled in.

The bitmapped graphics devices jpeg() and png() need the appropriate libraries in-
stalled: jpeg (version 6b or later) or libpng (versions 1.0.5 to 1.2.1 or 1.2.3 or later) and
zlib (version 1.1.3 or later) respectively. libpng-1.2.2 moved its header files, and you
will need add something like ‘-I/usr/local/include/libpng12’ to CPPFLAGS to make use
of it.

The bitmap and dev2bitmap devices make use of ghostscript (http://www.cs.wisc.edu/~ghost).
bzfile connections make use of libbz2, part of bzip2 (http://sources.redhat.com/bzip2).

A.2.1 Tcl/Tk

The tcltk package needs Tcl/Tk installed: the sources are available at
http://dev.scriptics.com/. To specify the locations of the Tcl/Tk files you may need
the configuration options

‘--with-tcltk’
use Tcl/Tk, or specify its library directory

‘--with-tcl-config=TCL CONFIG’
specify location of ‘tclConfig.sh’

‘--with-tk-config=TK CONFIG’
specify location of ‘tkConfig.sh’

or use the configure variables TCLTK_LIBS and TCLTK_CPPFLAGS to specify the flags needed
for linking against the Tcl and Tk libraries and for finding the ‘tcl.h’ and ‘tk.h’ headers,
respectively.

http://www.perl.com/CPAN/
http://www.cs.wisc.edu/~ghost
http://sources.redhat.com/bzip2
http://dev.scriptics.com/

Appendix A: Essential and useful other programs 10

A.2.2 Linear algebra

The linear algebra routines in R can make use of enhanced BLAS (Basic Linear
Algebra Subprograms, http://www.netlib.org/blas/faq.html) routines. Some are
compiler-system-specific (libsunperf on Sun Sparc1, libessl on IBM) but ATLAS
(http://math-atlas.sourceforge.net/) is a “tuned” BLAS that runs on a wide range
of Unix-alike platforms. If no more specific library is found, a libblas library in the
library path will be used. You can specify a specific BLAS library by the configuration
option ‘--with-blas’ and not to use an external BLAS library by ‘--without-blas’.

For systems with multiple processors it is in principle possible to use a multi-threaded
version of ATLAS. This is currently not supported. The problem is that SIGINT signals will
not be handled properly when sent during a multi-threaded ATLAS computation, and this
may result in a segmentation fault. Changes in the R internals are needed to support the
use of threaded libraries; this will hopefully be addressed in a future release.

Note that the BLAS library will be used for several add-on packages as well as for R
itself. This means that it is better to use a shared BLAS library, as most of a static library
will be compiled into the R executable and each BLAS-using package.

You will need double-precision and double-complex versions of the BLAS, but not single-
precision nor complex routines.

Optimized versions of LAPACK are available, but no provision is made for using them
with R as the likely performance gains are thought to be small.

As with all libraries, you need to ensure that they and R were compiled with compatible
compilers and flags. For example, this means that on Sun Sparc using the native compilers
the flag ‘-dalign’ is needed so libsunperf can be used.

An ATLAS ‘tuned’ BLAS can also be used on Windows: see ‘src/gnuwin32/INSTALL’
for how to enable this.

Note that under Unix (but not under Windows) if R is compiled against a non-default
BLAS, then all BLAS-using packages must also be. So if R is re-built after ATLAS is
installed, then packages such as quantreg will need to be re-installed.

1 Using the SunPro cc and f95 compilers

http://www.netlib.org/blas/faq.html
http://math-atlas.sourceforge.net/

Appendix B: Configuration on Unix 11

Appendix B Configuration on Unix

B.1 Configuration options

configure has many options: running
./configure --help

will give a list. Probably the most important ones not covered elsewhere are (defaults in
brackets)

‘--with-x’
use the X Window System

‘--x-includes=DIR’
X include files are in DIR

‘--x-libraries=DIR’
X library files are in DIR

‘--with-readline’
use readline library (if available) [yes]

‘--enable-R-profiling’
attempt to compile support for Rprof() [yes]

‘--enable-R-shlib’
build R as a shared library [no]

You can use ‘--without-foo’ or ‘--disable-foo’ for the negatives.
You will want to use ‘--disable-R-profiling’ if you are building a profiled executable

of R (e.g. with ‘-pg)’.
Flag ‘--enable-R-shlib’ causes the make process to build R as a shared library, typ-

ically called ‘libR.so’, and to take considerably longer, so you probably only want this if
you will be using an application which embeds R.

B.2 Configuration variables

If you need or want to set certain configure variables to something other than their
default, you can do that by either editing the file ‘config.site’ (which documents all the
variables you might want to set) or on the command line as

./configure VAR=value

These variables are precious, implying that they do not have to be exported to the envi-
ronment, are kept in the cache even if not specified on the command line and checked for
consistency between two configure runs (provided that caching is used), and are kept during
automatic reconfiguration as if having been passed as command line arguments, even if no
cache is used.

See the variable output section of configure --help for a list of all these variables.
One common variable to change is R_PAPERSIZE, which defaults to ‘a4’, not ‘letter’.

(Valid values are ‘a4’, ‘letter’, ‘legal’ and ‘executive’.)

Appendix B: Configuration on Unix 12

If you have libraries and header files, e.g., for GNU readline, in non-system directo-
ries, use the variables LDFLAGS (for libraries, using ‘-L’ flags to be passed to the linker)
and CPPFLAGS (for header files, using ‘-I’ flags to be passed to the C/C++ preproces-
sors), respectively, to specify these locations. These default to ‘/usr/local/lib’ and
‘/usr/local/include’ to catch the most common cases. If libraries are still not found,
then maybe your compiler/linker does not support re-ordering of ‘-L’ and ‘-l’ flags (this
has been reported to be a problem on HP-UX with the native cc). In this case, use a
different compiler (or a front end shell script which does the re-ordering).

If you find you need to alter configure variables, it is worth noting that some settings
may be cached in the file ‘config.cache’, and it is a good idea to remove that file (if it
exists) before re-configuring. Note that caching is turned off by default; use the command
line option ‘--config-cache’ (or ‘-C’) to enable caching.

B.3 Using make

To compile R, you will most likely find it easiest to use GNU make. On Solaris 2.6/7/8
in particular, you need a version of GNU make different from 3.77; 3.79 works fine, as does
the Sun make. The native make is reported to fail on SGI Irix 6.5.

To build in a separate directory you need a make that uses the VPATH variable, for
example GNU make, or Sun make on Solaris 2.7/8 (but not earlier).

If you want to use a make by another name, for example if your GNU make is called
‘gmake’, you need to set the variable MAKE at configure time, for example

./configure MAKE=gmake

B.4 Using FORTRAN

To compile R, you need a FORTRAN compiler or f2c, the FORTRAN-to-C converter
(http://www.netlib.org/f2c). The default is to search for g77, f77, xlf, cf77, cft77,
pgf77, fl32, af77, fort77, f90, xlf90, pgf90, epcf90, f95, xlf95, lf95, g95, and fc (in
that order)1, and then for f2c, and use whichever is found first; if none is found, R cannot
be compiled. The search mechanism can be changed using the configure variables F77 and
F2C which specify the commands that run the FORTRAN 77 compiler and FORTRAN-
to-C converter, respectively. If F77 is given, it is used to compile FORTRAN; otherwise,
if F2C is given, f2c is used even if a FORTRAN compiler would be be available. If your
FORTRAN compiler is in a non-standard location, you should set the environment variable
PATH accordingly before running configure, or use the configure variable F77 to specify its
full path.

If your FORTRAN libraries are in slightly peculiar places, you should also look at LD_
LIBRARY_PATH or your system’s equivalent to make sure that all libraries are on this path.

You must set whatever compilation flags (if any) are needed to ensure that FORTRAN
integer is equivalent to a C int pointer and FORTRAN double precision is equivalent
to a C double pointer. This is checked during the configuration process.

1 On HPUX fort77 is the posix compliant FORTRAN compiler, and comes second in the search list.

http://www.netlib.org/f2c

Appendix B: Configuration on Unix 13

Some of the FORTRAN code makes use of COMPLEX*16 variables, which is a FORTRAN
90 extension. This is checked for at configure time2, but you may need to avoid compiler
flags3 asserting FORTRAN 77 compliance.

For performance reasons4 you may want to choose a FORTRAN 90/95 compiler.
If you use f2c you may need to ensure that the FORTRAN type integer is translated

to the C type int. Normally ‘f2c.h’ contains ‘typedef long int integer;’, which will
work on a 32-bit platform but not on a 64-bit platform.

B.5 Compile and load flags

A wide range of flags can be set in the file ‘config.site’ or as configure variables on
the command line. We have already mentioned

CPPFLAGS header file search directory (‘-I’) and any other miscellaneous options for the
C and C++ preprocessors and compilers

LDFLAGS path (‘-L’), stripping (‘-s’) and any other miscellaneous options for the linker

and others include

CFLAGS debugging and optimization flags, C

MAIN_CFLAGS
ditto, for compiling the main program

SHLIB_CFLAGS
for shared libraries

FFLAGS debugging and optimization flags, FORTRAN

MAIN_FFLAGS
ditto, for compiling the main program

SHLIB_FFLAGS
for shared libraries

MAIN_LDFLAGS
additional flags for the main link

SHLIB_LDFLAGS
additional flags for linking the shared libraries

Library paths specified as ‘-L/lib/path’ in LDFLAGS are collected together and prepended
to LD_LIBRARY_PATH (or your system’s equivalent), so there should be no need for ‘-R’ or
‘-rpath’ flags.

To compile a profiling version of R, one might for example want to use
‘MAIN_CFLAGS=-pg’, ‘MAIN_FFLAGS=-pg’, ‘MAIN_LDFLAGS=-pg’ on platforms where ‘-pg’
cannot be used with position-independent code.

Beware: it may be necessary to set CFLAGS and FFLAGS in ways compatible with the
libraries to be used: one possible issue is the alignment of doubles, another is the way
structures are passed.

2 as well as its equivalence to the Rcomplex structure defined in ‘R_ext/Complex.h’.
3 In particular, avoid g77’s ‘-pedantic’, which gives confusing error messages.
4 e.g., to use an optimized BLAS on Sun/Sparc

Appendix B: Configuration on Unix 14

B.6 Building the gnome interface

This interface is experimental and incomplete. It provides a console and two graphics
devices named gtk() and gnome(). The console offers a basic command line editing and
history mechanism, along with tool and button bars that give a point-and-click interface
to some R commands. Many of the features of the console are currently stubs. The gtk()
graphics device is a port of the x11() device to gdk (the GIMP Drawing Kit). The gnome()
device uses the gnome canvas.

Due to its experimental nature, the gnome interface for R will not be built automatically.
You must specify it by running configure with the ‘--with-gnome’ option. For example,
you might run

./configure --with-gnome

but please check you have all the requirements first. The gnome interface for R is currently
being developed under gnome 1.4, and is not guaranteed to work with previous versions.
You therefore need at least the following libraries installed

audiofile-0.2.1
esound-0.2.23
glib-1.2.10
gtk+-1.2.10
imlib-1.9.10
ORBit-0.5.12
gnome-libs-1.4.1.2
libxml-1.8.16
libglade-0.17

It is preferable to have a complete installation of the gnome desktop environment. If you
use Linux, then this should be provided with your distribution. In addition, packaged binary
distributions of GNOME are available from http://www.ximian.com for the most popular
Linux distributions and for Solaris.

Remember that some package management systems (such as rpm and deb) make a
distinction between the user version of a package and the developer version. The latter
usually has the same name but with the extension ‘-devel’. If you use a pre-packaged
version of gnome then you must have the developer versions of the above packages in order
to compile the R-GNOME interface.

The full list of gnome options to configure is

‘--with-gnome’
use gnome, or specify its prefix [no]

‘--with-gnome-includes=DIR’
specify location of gnome headers

‘--with-gnome-libs=DIR’
specify location of gnome libs

‘--with-libglade-config=LIBGLADE CONFIG’
specify location of libglade-config

http://www.ximian.com

Appendix B: Configuration on Unix 15

B.7 Platform notes

This section provides some notes on building R on different Unix-like platforms. These
notes are based on tests run on one or two systems in each case with particular sets of
compilers and support libraries. Success in building R depends on the proper installation
and functioning of support software; your results may differ if you have other versions of
compilers and support libraries.

B.7.1 MacOS X

You can build R as a Unix application on MacOS X. You will need the DevTools, f2c or
g77, and the dlcompat library. You will also need to install an X sub-system or configure
with ‘--without-x’.

f2c, g77, the dlcompat library, and X server and support libraries are available from the
Fink project (http://fink.sourceforge.net). At the time of writing f2c and g77 were
not available as part of the Fink binary distribution and needed to be installed directly; for
example for g77 use

fink install g77

Fink prefers to install in ‘/sw’ so CPPFLAGS and LDFLAGS need to be set accordingly.
If you want to use Tcl/Tk, also available from Fink, then you will also need to use the
configure options to specify the Tcl and Tk config locations.

B.7.2 Solaris on Sparc

R has been built successfully on Solaris 2.7 aka Solaris 7 aka SunOS 5.7 using gcc/g77
and the SunPro WorkShop 6 compilers, and less regularly on Solaris 2.5.1, 2.6 and 8. GNU
make is needed prior to 2.7 for building other than in the source tree, and perhaps even
then.

If using gcc, do ensure that the compiler was compiled for the version of Solaris in use.
(This can be discerned from gcc -v.) gcc makes modified versions of some header files,
and so (for example) gcc compiled under Solaris 2.6 will not compile R under Solaris 2.7.
Also, do ensure that it was compiled for the assembler/loader in use. If you download gcc
from http://www.sunfreeware.com then you need to download binutils too. To avoid
all these pitfalls we strongly recommended you compile gcc from the sources yourself.

When using the SunPro compilers do not specify ‘-fast’, as this disables ieee arithmetic
and make check will fail. The maximal set of optimization options known to work is

-xlibmil -xO5 -dalign

We have found little performance difference between gcc and cc but considerable benefit
from using a SunPro Fortran compiler: the gcc/f77 combination works well.

To compile for a 64-bit target on Solaris (which needs an UltraSparc chip and for support
to be enabled in the OS) we used

CC="cc -xarch=v9"
CFLAGS="-xO5 -xlibmil -dalign"
F77="f95 -xarch=v9"
FFLAGS="-xO5 -xlibmil -dalign"
CXX=CC

http://fink.sourceforge.net
http://www.sunfreeware.com

Appendix B: Configuration on Unix 16

CXXFLAGS="-xO5 -xlibmil -dalign -xarch=v9"

in ‘config.site’. Note that using f95 allows the Sun performance library to be selected:
it will not work with f77, nor with g77.

Some care is needed to ensure that libraries found by configure are compatible with
the R executable and modules, as the testing process will not detect many of the possible
problems. For 32-bit builds under cc the flag ‘-dalign’ is needed for some of the Sun
libraries: fortunately the equivalent flag for gcc, ‘-munaligned-doubles’, is the default. In
theory, libraries such as libpng, libjpeg, zlib and the ATLAS libraries need to be built
with a pic or PIC flag, which could be a problem if static libraries are used. In practice
this seems to give little problem for 32-bit builds, but seems essential for 64-bit builds.

For a 64-bit build, 64-bit libraries must be used. As the configuration process starts
by default sets LDFLAGS to ‘-L/usr/local/lib’ you may need to reset it to avoid finding
32-bit addons.

B.7.3 HPUX

R has been built successfully on HPUX 10.2 and HPUX 11.0 using both native compilers
and gcc. However, 10.2 has not been tested since R 1.4.0. By default, R is configured to use
gcc and g77 on HPUX (if available). Some installations of g77 only install a static version
of the g2c library that cannot be linked into a shared library since its files have not been
compiled with the appropriate flag for producing position independent code (pic). This
will result in make failing with a linker error complaining that code needs to be compiled
with a ‘+z’ or ‘+Z’ flag, the native cc pic flag. If this is the case you either need to modify
your g77 installation or configure with

F77=fort77

to specify use of the native posix-compliant FORTRAN 77 compiler.

You may find that configure detects other libraries, such as BLAS, that R needs to
use as shared libraries but are only available as static libraries. If you cannot install shared
versions you will need to tell configure not to use these libraries.

Some versions of gcc may contain what appears to be a bug at the ‘-O2’ optimization
level that causes

> 2 %/% 2
[1] 1
> 1:2 %/% 2
[1] 0 0 # wrong!!

which will cause make check to fail. If this is the case, you should use CFLAGS to specify
‘-O’ as the optimization level to use.

Some systems running HPUX 11.0 may have a gcc that was installed under HPUX 10.2.
Between versions 10.2 and 11.0 HPUX changed its support functions for ieee arithmetic
from the recommended functions of the ieee standard to the ones specified in the C9x draft
standard. In particular, this means that finite has been replaced by isfinite. A gcc
configured for HPUX 10.2 run on 11.0 will not find isfinite, and as a result configure does
not recognize the machine as fully supporting ieee arithmetic and does not define IEEE_754
when compiling C code. This results in a failure in make check. The best solution is to

Appendix B: Configuration on Unix 17

install a properly configured gcc. An alternative work-around is to add ‘-DIEEE_754’ to
the CFLAGS variable.

You can configure R to use both the native cc and fort77 with
./configure CC=cc F77=fort77

f90 insists on linking against a static ‘libF90.a’ which typically resides in a non-
standard directory (e.g., ‘/opt/fortran90/lib’). Hence, to use f90 one needs to add this
directory to the linker path via the configure variable LDFLAGS (e.g., ./configure F77=f90
LDFLAGS=/opt/fortran90/lib).

B.7.4 IRIX

R has been built successfully on IRIX64 6.5 using gcc/f77 or cc/f77 for 32-bit executa-
bles and the native compilers for a 64-bit executable. The command

./configure CC="cc -64" F77="f77 -64" --with-tcltk=no

was used to create the 64-bit executable. It was necessary to explicitly omit Tcl/Tk because
configure would find the 32-bit version but not detect that is was incompatible with a 64-
bit build.

A 32-bit build using gcc/g77 passed make check but failed make test-all-extras in
the complex LAPACK tests.

B.7.5 Alpha/OSF1

R has been built successfully on an Alpha running OSF1 V4.0 using gcc/g77 and cc/f77.
Mixing cc and g77 fails to configure. The configure option ‘--without-blas’ was used
since the native blas seems not to have been built with the flags needed to suppress SIGFPE’s.
Currently R does not set a signal handler for SIGFPE on platforms that support ieee arith-
metic, so these are fatal.

make check passes with no problems.

B.7.6 Alpha/FreeBSD

Attempts to build R on an Alpha with FreeBSD 4.3 have been only partly successful.
Configuring with ‘-mieee’ added to both CFLAGS and FFLAGS builds successfully, but tests
fail with SIGFPE’s. It would appear that ‘-mieee’ only defers these rather than suppressing
them entirely. Advice on how to complete this port would be greatly appreciated.

B.7.7 AIX

On AIX 4.3.3 and AIX 5.1, it was found that the use of “run time linking” (as opposed
to normal AIX style linking) was required. For this, the R main program must be linked to
the runtime linker with the ‘-brtl’ linker option, and shareable objects must be enabled for
runtime linking with the ‘-G’ linker option. Without these options, the AIX linker will not
automatically link to any shared object with a ‘.so’ extension. Also, the R main program
is unable to dynamically load modules (such as X11) with the dlopen call.

When setting MAIN_LDFLAGS and SHLIB_LDFLAGS accordingly, note that linker flags must
be escaped using ‘-Wl,’ if gcc is used for linking: use ‘MAIN_LDFLAGS="-Wl,brtl"’ and
‘SHLIB_LDFLAGS="-Wl,-G"’ in this case.

Appendix C: New platforms 18

Appendix C New platforms

There are a number of sources of problems when installing R on a new hardware/OS
platform. These include

Floating Point Arithmetic: R supports the posix, SVID and ieee models for floating
point arithmetic. The posix and SVID models provide no problems. The ieee model how-
ever can be a pain. The problem is that there is no agreement on how to set the signalling
behaviour; Sun/Sparc, SGI/IRIX and ix86 Linux require no special action, FreeBSD re-
quires a call to (the macro) fpsetmask(0) and OSF1 requires that computation be done
with a ‘-ieee_with_inexact’ flag etc. On a new platform you must find out the magic
recipe and add some code to make it work. This can often be done via the file ‘config.site’
which resides in the top level directory.

Beware of using high levels of optimization, at least initially. On many compilers these
reduce the degree of compliance to the ieee model. For example, using ‘-fast’ on the
Solaris SunPro compilers causes R’s NaN to be set incorrectly.

Shared Libraries: There seems to be very little agreement across platforms on what
needs to be done to build shared libraries. there are many different combinations of flags
for the compilers and loaders. GNU libtool cannot be used (yet), as it currently does not
fully support FORTRAN (and will most likely never support f2c: one would need a shell
wrapper for this). The technique we use is to first interrogate the X window system about
what it does (using xmkmf), and then override this in situations where we know better (for
tools from the GNU Compiler Collection and/or platforms we know about). This typically
works, but you may have to manually override the results. Scanning the manual entries
for cc and ld usually reveals the correct incantation. Once you know the recipe you can
modify the file ‘config.site’ (following the instructions therein) so that the build will use
these options.

If you do manage to get R running on a new platform please let us know about it so we
can modify the configuration procedures to include that platform.

If you are having trouble getting R to work on your platform please feel free to get in
touch to ask questions. We have had a fair amount of practice at porting R to new platforms
. . . .

Function and variable index 19

Function and variable index

C
configure . 2, 3, 4, 11, 12

I
install.packages . 7

M
make . 12

R

R_HOME . 2

remove.packages . 8

rsync . 1

U

update.packages . 8

Concept index 20

Concept index

F
FORTRAN . 12

H
Help pages . 2

I
Installation . 3

Installing under MacOS . 6

Installing under Unix . 2

Installing under Windows . 5

L
Linux . 2

M
MacOS X . 2, 6
Manuals . 3
Manuals, installing . 4

O
Obtaining R . 1

P
Packages . 7
Packages, installing . 7
Packages, removing . 8
Packages, updating . 8
Patch files . 1

S
Sources for R . 1

	Obtaining R
	Getting and unpacking the sources
	Using rsync

	Installing R under Unix
	Simple compilation
	Making the manuals
	Installation

	Installing R under Windows
	Building from source

	Installing R on Classic MacOS
	Add-on packages
	Installing packages
	Updating packages
	Removing packages

	Essential and useful other programs
	Essential programs
	Useful libraries and programs
	Tcl/Tk
	Linear algebra

	Configuration on Unix
	Configuration options
	Configuration variables
	Using make
	Using FORTRAN
	Compile and load flags
	Building the GNOME interface
	Platform notes
	MacOS X
	Solaris on Sparc
	HPUX
	IRIX
	Alpha/OSF1
	Alpha/FreeBSD
	AIX

	New platforms
	Function and variable index
	Concept index

